

Muon-Based Accelerators

J. Scott Berg
2 October 2003
High Energy Physics Planning Committee

Overview

- Types of machines
 - Neutrino Factories
 - Muon Colliders
- Components
 - **◆** Target
 - ◆ Early transport
 - Cooling
 - Acceleration
- Where are we?

Neutrino Factories

- Give a well-defined, high-flux neutrino beam, with both ν_{μ} and $\bar{\nu}_{e}$.
- Two performance characteristics
 - Neutrino flux to detector (primary)
 - Uncertainty in neutrino flux to detector (secondary)
- Neutrino flux directly proportional to muon count
 - ◆ Muons approximately proportional to proton beam power
 - **★** Target material has an effect
 - **★** Assumes short proton pulse
 - ◆ Both signs, factor of 2! Distinguish by timing
 - Improving efficiency
 - **★** Cooling to increase number of particle that fit in downstream pipe
 - **★** Increase size of downstream pipe

- Improving flux uncertainty
 - ◆ Reducing beam size: more cooling
 - Increasing length of storage ring
 - Measuring the neutrino flux
 - **★** Exotic near techniques
 - **★** Medium-distance detector
- Need to quantify desired flux uncertainty
- Know how to make these. Continued work on cost/performance optimization.

Muon Colliders

- Collide non-composite particles
 - ◆ Lower energy for same physics as protons, more compact ring
- Synchrotron radiation/beamstrahlung significantly smaller problem than for electrons
 - Much better energy resolution
- Enhancement of s-channel Higgs cross-section over electrons
- Very high energies (> 3 TeV), neutrino radiation problem!

Target

- Performance of most muon machines proportional to muons produced at target
- Muons produced roughly proportional to proton beam power
- High energy per pulse desirable
 - ◆ Lower average power requirements in downstream systems (pulsed RF)
 - Higher luminosity in collider
 - ◆ Reach a limit: beam loading
 - Shock stress on target
- High power targets have not fared well, especially with high pulse energies
 - Research program in high power targets
- Important for superbeams, other applications as well

Early Transport

Muon colliders

- ◆ Put all particles of a given sign in a single bunch: maximize luminosity
- ◆ Requires substantial longitudinal emittance reduction

Neutrino Factories

- ◆ No advantage to having particles in a single bunch
- ◆ Create long bunch train of smaller bunches
- ◆ Newer schemes keep both muon signs: double performance
- No longitudinal cooling required

Cooling

- Reduction of beam emittances (sizes), transverse and possibly longitudinal
- Purposes
 - ◆ Increase number of muons into fixed-size beam pipe
 - ◆ Reduce uncertainty in flux for neutrino beam
 - ◆ Increase luminosity in collider
- Must be fast (decay): ionization cooling
- 6-D (longitudinal) cooling
 - Necessary for collider
 - ◆ Improves transmission in neutrino factory
 - ◆ Reduced energy spread gives lower uncertainty in neutrino factory
 - ◆ Cost-effective method: use rings

- **★** Injection/extraction a concern
- **★** Matching from one stage to the next
- Collider requires much lower emittances than neutrino factory
 - ◆ Very high magnetic fields: lithium lenses
 - Problems here far from being solved
- Cooling demonstration experiment being built, probably in Europe (RAL)

Acceleration

- Improvements here related mostly to cost reduction
- Novel idea (rediscovery of an old idea): FFAGs
 - ◆ Rapid acceleration without ramping magnets
 - Avoids limitations of switchyards in CEBAF-style recirculating accelerators
 - ◆ New idea: "non-scaling FFAG"; never been built
 - * Would like to build small-scale electron model
 - ◆ May be useful for proton acceleration as well
- For neutrino factory, possibly more cost effective to have no cooling and larger aperture in acceleration and storage ring
 - Uncertainty higher

Physics Ring

- Neutrino factory: storage ring
 - ◆ Ring must be long, to make large fraction of decays go toward detector
 - Ring must be buried, or create hill
 - ◆ Reduce uncertainty by making ring longer
- Muon collider
 - Higgs energy interesting
 - ◆ High energies: neutrino radiation
 - ★ Bury ring deep, or raise up high
 - ★ Put in remote location

Where Are We?

Neutrino Factories

- We know how to build them
- ◆ Need target design for high performance
- Still plenty of work to optimize cost/performance
- Machine requirements for physics must be defined

Muon colliders

- Need more work on cooling
 - **★** Longitudinal cooling
 - **★** Cooling to very low emittances
- Deal with neutrino radiation issue